Advanced Calculus

Theorem Sheet

Axioms A1 (Basic Properties of \mathbb{R}):

- 1. Closure of addition and multiplication
- 2. Commutativity of addition
- 3. Associativity of addition
- 4. Existence of an additive identity
- 5. Existence of an additive inverse
- 6. Commutativity of multiplication
- 7. Associativity of multiplication
- 8. Existence of a multiplicative identity
- 9. Existence of multiplicative inverses
- 10. The Distributive Property
- 11. The Nontriviality Assumption

Theorems T2 (Basic Properties of \mathbb{R}):

- 1. The additive identity, 0 is unique.
- 2. a0 = 0a = 0
- 3. $ab = 0 \Rightarrow a = 0 \text{ or } b = 0$
- 4. The equation a + x = 0 has a solution.
- 5. The solution to the above equation is unique.
- 6. The multiplicative identity is unique.
- 7. $a \neq 0 \Rightarrow ax = 1$ has a solution.
- 8. The solution to the above equation is unique.
- 9. -(-a) = a
- 10. $a \neq 0 \Rightarrow (a^{-1})^{-1} = a$
- 11. $a \neq 0 \Rightarrow (-a^{-1}) = -a^{-1}$

Axioms A3 (Positivity Axioms):

- 1. a, b are positive $\Rightarrow ab$ and a + b are positive.
- 2. Exactly one of the following is true
 - \blacksquare a is positive
 - -a is positive
 - a=0
- 3. a > b means a b is positive.
- 4. a > 0 means a is positive
- 5. $a \ge b$ means a b is positive or zero.

Theorems T4 (Positivity Properties):

- 1. $a \neq 0 \Rightarrow a^2 > 0$
- 2. 1 > 0
- 3. $a > 0 \Rightarrow a^{-1} > 0$
- 4. c > 0 and $a > b \Rightarrow ac > bc$
- 5. c < 0 and $a > b \Rightarrow ac < bc$

Theorems T5 (Induction Theorems):

- 1. Theorem: N is inductive
- 2. If $A \subseteq \mathbb{N}$ is inductive, then $A = \mathbb{N}$.
- 3. Let S(n) be a statement (claim) based on the natural number n. Assume the following are true:
 - S(1)
 - $S(k) \Rightarrow S(k+1)$

Then S(n) is true for every natural number n.

Theorems T6 (Theorems on numbers):

- 1. $n, m \in \mathbb{N} \Rightarrow n + m \in \mathbb{N}$
- 2. $n, m \in \mathbb{N} \Rightarrow nm \in \mathbb{N}$
- 3. If $x \in \mathbb{Q}$, then there are some $m, n \in \mathbb{Z}$ with at least one of them odd such that $x = \frac{m}{n}$
- 4. If $n \in \mathbb{Z}$ is even, then n^2 is as well.

Axioms A7 (Sup exists): Every set of real numbers that has an upper bound, has a single smallest upper bound.

Theorem T8 (\sqrt{x} exists): Let c be a positive number. There is a unique solution to the system below.

$$x^2 = c$$

Theorems T9 (Archimedean Property):

- 1. $\forall_{c>0} \exists_{n \in \mathbb{N}} (n > c)$
- 2. $\forall_{\varepsilon>0} \exists_{n\in\mathbb{N}} \left(\frac{1}{n} < \varepsilon\right)$

Theorem T10: Let $n \in \mathbb{Z}$. There is no integer in the interval (n, n + 1)

Theorem T11: Assume $\emptyset \neq S \subseteq \mathbb{Z}$, and that S is bounded above. Then S has a maximum element.

Theorem T12: $\forall_{c \in \mathbb{R}} \exists !_{k \in \mathbb{Z}} (k \in [c, c+1))$

Theorem T13: \mathbb{Q} is dense in \mathbb{R} .

Theorems T14: For $x \in \mathbb{R}$, d > 0:

- 1. $|x| \le d$ iff $-d \le x \le d$
- $2. -|x| \le x \le |x|$

Theorem T15 (The Triangle Inequality): For all real $a, b: |a + b| \le |a| + |b|$

Theorem T16 (The Reverse Triangle Inequality): For all real a, b: |a| - |b| < |a - b|

Theorem T17: Fix $a \in \mathbb{R}$ and r > 0. TFAE:

- |x a| < r
- a r < x < a + r
- $x \in (a-r, a+r)$

Theorem T18: Let $a, b \in \mathbb{R}$, $n \in \mathbb{N}$. Then:

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + b^{n-1})$$
$$a^{n} - b^{n} = (a - b)\sum_{k=0}^{n-1} a^{(n-1)-k}b^{k}$$

Theorem T19 (Finite geometric series): Let $m \in \mathbb{N}$; $r \neq 1$. Then:

$$1 + r + r^{2} + \dots + r^{m} = \frac{1 - r^{m+1}}{1 - r}$$
$$\sum_{k=0}^{m} r^{k} = \frac{1 - r^{m+1}}{1 - r}$$

Theorem T20 (Binomial Theorem): $a,b \in \mathbb{R}, n \in \mathbb{N}$. Then:

$$(a+b)^{n} = \binom{n}{0} a^{n} + \binom{n}{1} a^{n-1} b + \dots + \binom{n}{n} b^{n}$$
$$(a+b)^{n} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

Lemma L21: If $\{a_n\} \to 0$ and $\exists_{N \in \mathbb{N}} \forall_{n \geq N} (|b_n| \leq C|a_n|)$ then also $\{b_n\} \to 0$.

 $\textbf{Lemma L22} : \text{If } \{a_n\} \rightarrow a \text{ and } \exists_{N \in \mathbb{N}} \forall_{n \geq N} (|b_n - b| \leq \mathcal{C} |a_n - a|) \text{ then also } \{b_n\} \rightarrow b.$

Theorem T23 (Sum property for convergence): Assume $\{a_n\} \to a$ and $\{b_n\} \to b$. Then $\{a_n+b_n\} \to a+b$.

Lemma L24: Assume $\{a_n\} \to a$, then $\{ca_n\} \to ca$.

Lemma L25: Assume $\{a_n\} \to 0$ and $\{b_n\} \to 0$, then also $\{a_nb_n\} \to 0$.

Theorem T26 (product property for convergence): Assume $\{a_n\} \to a$ and $\{b_n\} \to b$. Then $\{a_nb_n\} \to ab$.

Theorem T27: Assume $b_n \neq 0$, $b \neq 0$, and $\{b_n\} \rightarrow b$. Then $\{\frac{1}{b_n}\} \rightarrow \frac{1}{b}$.

Theorem T28 (Quotient property for convergence): Assume $b_n \neq 0$, $b \neq 0$, $\{a_n\} \rightarrow a$, and $\{b_n\} \rightarrow b$. Then $\left\{\frac{a_n}{b_n}\right\} \rightarrow \frac{a}{b}$

Theorem T29 (Linearity property of convergence): Assume $\{a_n\} \to a$, and $\{b_n\} \to b$. Then $\{ca_n + db_n\} \to ca + db$

Theorem T30 (Polynomial property for convergence): Assume $\{a_n\} \to a$, and f(x) is a polynomial. Then the polynomial of the sequence also converges: $\{f(a_n)\} \to f(a)$

Theorem T31: Every convergent sequence is bounded.

Theorem T32: A set S is dense in \mathbb{R} if and only if every real number is the limit of a sequence in S:

Lemma L33: Assume $\{d_n\} \to d$ and $d_n \ge 0$ for each n, then $d \ge 0$.

Theorem T34: Assume $\{c_n\} \to c$ and $c_n \in [a, b]$ for all $n \in \mathbb{N}$. Then $c \in [a, b]$

Theorem T35 (Monotone Convergence Theorem): Let $\{a_n\}$ be a monotone sequence. Then $\{a_n\}$ converges if and only if it is bounded. Furthermore, if it does converge, it converges to either its sup or inf.

Theorem T36 (Nested Interval Theorem): Construct a sequence of intervals $I_n := [a_n, b_n]$ that are nested, by which we mean $\forall_{n \in \mathbb{N}} (I_{n+1} \subseteq I_n)$.

If $\{b_n - a_n\} \to 0$, then for some $c \in \mathbb{R}$:

$$\begin{cases}
a_n \} \to c \\
\{b_n\} \to c
\end{cases}$$

$$\bigcap_{n=1}^{\infty} I_n = \{c\}$$

Theorem T37: Let $\{a_n\}$ be a sequence and assume $\{a_n\} \to a$. Then every subsequence also converges to a. That is, $\{a_{n_k}\} \to a$

Theorem T38: Every sequence has a monotone subsequence.

Theorem T39: Every bounded sequence has a convergent subsequence.

Theorem T40: (Sequential Compactness of closed intervals): [a, b] is sequentially compact for all a < b.

Theorem T41: Let $S \subseteq \mathbb{R}$. The following are equivalent:

- 1. *S* is closed and bounded.
- 2. *S* is sequentially compact
- 3. *S* is compact

Theorem T42: Let $f, g: D \to \mathbb{R}$ both be continuous functions. Then f + g, f - g, and $f \cdot g$ are also continuous.

Theorem T43: Let $f, g: D \to \mathbb{R}$ both be continuous functions. Assume $g(x) \neq 0$ on D. Then $\frac{f}{g}$ is continuous.

Corollary C44: Let $p, q: \mathbb{R} \to \mathbb{R}$ be polynomials. Then p and q are continuous, as well as the rational function $\frac{p}{q}: D \to \mathbb{R}$ where $D = \{x \in \mathbb{R} | g(x) \neq 0\}$.

Theorem T45: Let $f: D \to \mathbb{R}$ and $g: U \to \mathbb{R}$. Assume the following.

- $f(D) \subseteq U$
- f is continuous at $x_0 \in D$
- g is continuous at $f(x_0) \in U$.

Then $g \circ f$ is continuous at x_0 .

Lemma L46: Let $f:[a,b] \to \mathbb{R}$ be a continuous function. The image of f is bounded.

Theorem T47 (Extreme Value Theorem): Let $f:[a,b] \to \mathbb{R}$ be continuous. Then f attains both a maximum and minimum value.

Theorem T48 (Intermediate Value Theorem): Let $f: [a, b] \to \mathbb{R}$ be continuous. Let $c \in \mathbb{R}$ such that f(a) < c < f(b). Then there is some $x_0 \in (a, b)$ such that $f(x_0) = c$. The same is true if we replace each "<" with ">".

Theorem T49: Let I be an interval and $f: I \to \mathbb{R}$ be continuous. Then f(I) is also an interval.

Theorem T50: Let $f: D \to \mathbb{R}$ be a uniformly continuous function. Then f is also continuous.

Theorem T51: Let $f:[a,b] \to \mathbb{R}$ be continuous. Then f is also uniformly continuous.

Theorem T52: Let $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$. The sequential definition of continuity at $x_0 \in D$ is equivalent to the $\varepsilon - \delta$ criterion of continuity at x_0 . Also, the uniformly continuous definition is equivalent to the $\varepsilon-\delta$ criterion of uniform continuity.

Theorem T53: Suppose $f: D \to \mathbb{R}$ is monotone. If f(D) is an interval, then f is continuous.

Theorem T54: Let I be an interval and $f: I \to \mathbb{R}$ a monotone function. Then f is continuous iff its image f(I) is an interval.

Theorem T55: Let I be an interval and $f: I \to \mathbb{R}$ a strictly monotone function. Then $f^{-1}: f(I) \to \mathbb{R}$ exists and is continuous.

Theorem T56: Let r be a rational number and define $f:[0,\infty)\to\mathbb{R}$ be given by $f(x)=x^r$. Then f is continuous.

Theorem T57: Let $f, g: D \to \mathbb{R}$ be functions. The following limit laws hold:

1.
$$\lim_{x \to x_0} f(x) + g(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

1.
$$\lim_{x \to x_0} f(x) + g(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

2. $\lim_{x \to x_0} f(x)g(x) = \left(\lim_{x \to x_0} f(x)\right) \left(\lim_{x \to x_0} g(x)\right)$

3.
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \text{ provided that } g(x) \neq 0 \text{ in } D.$$

Theorem T58: If $f: D \to \mathbb{R}$, $g: U \to \mathbb{R}$, $x_0 \in D$, $y_0 \coloneqq \lim_{x \to x_0} f(x)$ is a limit point of U, and $f(D - \{x_0\}) \subseteq U - \{y_0\}$, then: $\lim_{x \to x_0} (g \circ f)(x) = \lim_{x \to y_0} g(x)$

Theorem T59: Let $f, g: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$ both be differentiable. Then f + g and fg are also differentiable, as well as $\frac{f}{g}$ is differentiable with the restricted domain $\{x \in D | g(x) \neq 0\}$.

Theorem T60: Let $f: D \to \mathbb{R}$ where $D \subseteq \mathbb{R}$ be differentiable. Then f is continuous on D.

Theorem T61: Let P be a partition of [a,b] and P_2 be a refinement of P. Then $L(f,P) \le L(f,P_2)$ and $U(f,P_2) \le U(f,P)$

Theorem T62: Let P_1 and P_2 be partitions of [a,b]. Then $L(f,P_1) \leq U(f,P_2)$

Theorem T63: Let a < b and $f: [a, b] \to \mathbb{R}$ be a function. Then $\int_a^b f \le \overline{\int_a^b f}$.

Theorem T64: Let $n \in \mathbb{N}$. The function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^n$ is differentiable and:

$$f'(x) = nx^{n-1}$$

Theorem T65: Let I be a neighborhood of x_0 and assume the function $f: I \to \mathbb{R}$ is differentiable at x_0 . Then f is continuous at x_0 .

Theorem T66: Let I be a neighborhood of x_0 and assume the functions $f,g:I\to\mathbb{R}$ are both differentiable at x_0 . The following functions are differentiable, satisfy these equations and are typically known as the sum, product, and quotient rules.

(Must have $g'(x) \neq 0$ on the domain in the last one)

$$(f+g)' = f' + g'$$

$$(fg)' = f'g + fg'$$

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$

Theorem T67: Let $n \in \mathbb{Z}$. The function $f:(0,\infty) \to \mathbb{R}$ given by $f(x)=x^n$ is differentiable and:

$$f'(x) = nx^{n-1}$$

Theorem T68 (Chain Rule): Let I be a neighborhood of x_0 . Assume that $f: I \to \mathbb{R}$ is differentiable at x_0 and $g: J \to \mathbb{R}$ is differentiable at $f(x_0)$. Here $J \supseteq f(I)$. Then the function $g \circ f: I \to \mathbb{R}$ is differentiable at x_0 and:

$$(g\circ f)'(x_0)=g'\bigl(f(x_0)\bigr)f'(x_0)$$

Lemma L69: Let I be a neighborhood of x_0 and assume $f: I \to \mathbb{R}$ is differentiable at x_0 . If x_0 is a maximizer or a minimizer, then $f'(x_0) = 0$.

Theorem T70 (Rolle's Theorem): Let $f:[a,b] \to \mathbb{R}$ be continuous and differentiable on (a,b). If f(a)=f(b), then there is a point $x_0 \in (a,b)$ such that $f'(x_0)=0$

Theorem T71 (Mean Value Theorem): Let $f:[a,b] \to \mathbb{R}$ be continuous and differentiable on (a,b). Then there is a point $x_0 \in (a,b)$ such that $f'(x_0) = \frac{f(b) - f(a)}{b-a}$.

Lemma L72: Let $f: I \to \mathbb{R}$ be a differentiable function. Then f is a constant function if and only if f'(x) = 0 on I.

Corollary C73: Let I be an open interval and f, g: $I \to \mathbb{R}$ be differentiable functions. f and g differ by a constant if and only if g'(x) = h'(x).

Corollary C74: Let I be an open interval and $f: I \to \mathbb{R}$ be a differentiable function. If f'(x) > 0 on I, then f is strictly increasing.

Theorem T75 (2nd Derivative Test): Let I be an open interval an $\mathrm{d} f\colon I\to\mathbb{R}$ be a twice-differentiable function. If $f'(x_0)=0$ and $f''(x_0)>0$, then x_0 is a local minimizer. If $f'(x_0)=0$ and $f''(x_0)<0$, then x_0 is a local maximizer.

Theorem T76: Let $f:[a,b] \to \mathbb{R}$ be a bounded function and $P = \{x_0, x_1, ..., x_n\}$ a partition of [a,b]. Let m be a lower bound for f and M an upper bound. Then:

$$m(b-a) \le L(f,P) \le U(f,P) = M(b-a)$$

Theorem T77: Let $f:[a,b] \to \mathbb{R}$ be a bounded function and $P = \{x_0, x_1, ..., x_n\}$ a partition of [a,b]. Let P^* be a refinement of P. Then:

$$L(f,P) \le L(f,P^*) \le U(f,P^*) \le U(f,P)$$

Theorem T78: Let $f:[a,b] \to \mathbb{R}$ be a bounded function and P_1 and P_2 different partitions of [a,b]. Then:

$$L(f, P_1) \leq U(f, P_2)$$

Theorem T79: Let $f:[a,b] \to \mathbb{R}$. The <u>lower integral</u> of f on [a,b] is:

$$\int_{a}^{b} f := \sup_{P} (L(f, P))$$

Similarly, the <u>upper integral</u> of f is:

$$\int_{a}^{\overline{b}} f := \inf_{P} (U(f, P))$$

Theorem T80: Let $f:[a,b] \to \mathbb{R}$.

$$\int_{a}^{b} f \le \int_{a}^{\overline{b}} f$$

Lemma L81: Let $f:[a,b] \to \mathbb{R}$ be bounded and P a partition of [a,b]. Then:

$$L(f,P) \le \int_{\underline{a}}^{\underline{b}} f \le \int_{\underline{a}}^{\overline{b}} f \le U(f,P)$$

Theorem T82: Let $f:[a,b] \to \mathbb{R}$ be bounded. Then f is integrable if and only if there is a sequence of partitions $\{P_n\}$ such that:

$$\lim_{n\to\infty} U(f, P_n) - L(f, P_n) = 0$$

Theorem T83: Let $f:[a,b] \to \mathbb{R}$ be a bounded and monotone function. Then f is integrable.

Theorem T84: Let $f:[a,b] \to \mathbb{R}$ be a piecewise constant function (step function). Then f is integrable.

Theorem T85: Let $f: [a, b] \to \mathbb{R}$ be integrable. Then:

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Theorem T86: Let $f, g: [a, b] \to \mathbb{R}$ be integrable and assume that $f(x) \le g(x)$ for all x. Then:

$$\int_{a}^{b} f = \int_{a}^{b} g$$

Theorem T87: Let $f, g: [a, b] \to \mathbb{R}$ be integrable. Then:

$$\int_{a}^{b} \alpha f + \beta g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$$

Theorem T88: In addition to the conditions above, let P be a partition of [a, b]. Then:

$$L(f,P) + L(g,P) \le L(f+g,P)$$

$$U(f+g,P) \le U(f,P) + U(g,P)$$

Theorem T89: Let $f:[a,b] \to \mathbb{R}$ be integrable and assume |f| is too. Then:

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

Lemma L90: Let $f:[a,b] \to \mathbb{R}$ be continuous and P be a partition of [a,b]. Then there are points u,v in a single part of the partition such that:

$$U(f,P) - L(f,P) \le (f(v) - f(u))(b-a)$$

Theorem T91: Let $f:[a,b] \to \mathbb{R}$ be continuous. Then f is integrable.

Theorem T92: Let $f:[a,b] \to \mathbb{R}$ be a function that is continuous on (a,b). Then f is integrable, and $\int_a^b f$ does not depend on f(a) nor f(b).